Constant Contact Side Bearings

Shop and Field Inspection Pocket Guide

Amsted Rail

THE SYSTEM IS THE SOLUTION
Table of Contents

1.0 Introduction ... 4
2.0 Model Identification 6
3.0 Installation ... 8
 3.1 Set Up Height ... 8
 3.2 Wear Plate Guidelines 8
 3.3 Bolt Down and Assembly 9
4.0 Yard Inspection ... 11
 4.1 Set Up Height ... 11
 4.2 General Inspection 11
5.0 Shop Inspection ... 12
 5.1 Set Up Height ... 12
 5.2 Wear Plate Guidelines 12
 5.3 Parts Inspection and Gauging 13
 5.4 Spring Condemning Limits 15
List of Illustrations

Fig. 1 Spring Control™
3800 LT Side Bearing 6

Fig. 2 Spring Control™
4500 LT Side Bearing 6

Fig. 3 Spring Control™
5600 LT Side Bearing 7

Fig. 4 Ride Control®
98-5-10152 Side Bearing 7

Fig. 5 Bearing Assembly 10

Fig. 6 Spring Control™
Cap Wear Indicators 13

Fig. 7 Ride Control®
Cap Wear Indicators 13

Fig. 8 Base Width Gauge 14

Fig. 9 Wall Thickness Gauge 14
1.0 Introduction and Model Selection

This guide serves as a convenient reference for the complete line of ASF-Keystone Side Bearings. Various sections cover installation, maintenance and inspection procedures.

ASF-Keystone Side Bearings use steel spring technology, which provides performance equal or better to elastomer designs when new. After the car has been in service, steel springs maintain performance with little or no preload decay.

For proper operation, it is necessary to identify the correct side bearing for your application.
Spring Control™ Side Bearings
- 3800 LT for intermodal or articulated car applications
- 4500 LT for cars with lightweights of 50,000 lbs. or less
- 5600 LT for cars with lightweights greater than 50,000 lbs.

5600 LT is recommended for most applications. Alternate applications may be based on individual customer requirements.

Ride Control® Side Bearings
- 98-5-10152 for cars with lightweights greater than 50,000 lbs.

Ride Control® side bearings are no longer in production. This is provided as reference for existing owners only.
2.0 Model Identification

Figure 1: Spring Control™ 3800 LT Side Bearing

- #17890 Side Bearing Cap
- #2207 Inner Inner Spring
- #2203 Outer Spring
- #17889 Side Bearing Base

Figure 2: Spring Control™ 4500 LT Side Bearing

- #17892 Side Bearing Cap
- #2204 Inner Spring
- #2203 Outer Spring
- #17891 Side Bearing Base
#17887 Side Bearing Cap
#2207 Inner Inner Spring
#2204 Inner Spring
#2203 Outer Spring
#17886 Side Bearing Base

Figure 3:
Spring Control™ 5600 LT Side Bearing

#17793 Side Bearing Cap
#5041 Inner Inner Spring
#5040 Inner Spring
#5039 Outer Spring
#17794 Side Bearing Base

Figure 4:
Ride Control® 98-5-10152 Side Bearing
3.0 Installation

3.1 Set Up Height

The distance between the side bearing pad and the wear plate on the car body, or the set up height, must be adjusted until it is equal to 5-\(\frac{1}{16}\)" ± \(\frac{1}{16}\)" before side bearings are installed. If an elastomeric horizontal bowl liner is used, it is recommended that the set-up height be adjusted to 5-\(\frac{1}{8}\)" ± \(\frac{1}{16}\)". (Some cars may vary. Refer to owners’ instructions.) This procedure must be performed with an empty car body located on level track. ASF-Keystone recommends using an inside caliper and steel rule for measurement accuracy.

3.2 Wear Plate Guidelines

The surface of the car body wear plate must be free of weld spatter, heavy rust, and other irregularities. If irregularities do exist, a grinding wheel may be used to remove them. Fasteners must be adequately tightened with their heads recessed below the surface of the plate. Surface height variations can be detected by holding a steel straight edge perpendicular to the plate.
Any plate with variations between fastener holes greater than $\frac{1}{8}$", or greater than $\frac{1}{16}$" over any 4" space between holes, must be replaced. Also, the plate surface must be reasonably parallel to the side bearing pad. Overall, variations should not exceed $\frac{1}{16}$" across width or $\frac{1}{8}$" end to end.

3.3 Bolt Down and Assembly

The side bearing base must be secured to the pad using fasteners supplied by the user as shown. Bolts should be torqued to a minimum of 300 - 350 ft. lbs. if lubricated, 400 - 450 ft. lbs. if dry. For **Spring Control™ bearings only**, a thin coat of #2 lithium grease should be applied to the surfaces indicated using a brush or rag. Refer to section 2.0 for the spring arrangement of each particular bearing and assemble the springs and cap. Lastly, check to see that all springs are seated properly and are not leaning from correct vertical orientation.
Lubricate vertical wear surfaces, both sides

Figure 5: Bearing Assembly (5600 LT Shown)

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>2</td>
<td>.875-9 UNC-2A HEX HEAD BOLT, SAE GRADE 5 OR ASTM A-449</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>.938 I.D. X 1.75 O.D. HARDENED STEEL PLAIN WASHER</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>.875-9 UNC-2B SELF LOCKING HEX NUT SAE GRADE 5</td>
</tr>
</tbody>
</table>

*Please refer to bolt length chart
4.0 Yard Inspection

4.1 Set Up Height

The distance between the side bearing pad and the wear plate on the car body, or the set up height, must be equal to 5 - 1/16" ± 1/8". (Some cars may vary. Refer to owners’ instructions.) While it is preferable to make measurements while the car is on level track, it is acceptable to average the two measurements on one end of a car if it is tilted.

In general, a measurement should never be less than 4 - 7/8" for a single bearing. When reasonably level track conditions cannot be obtained, the sum of the pairs measurement may be used. This is done by adding the two side bearing measurements on each truck. The sum of the measurements on each truck may be as low as 9 - 7/8" or as high as 10 - 3/8". ASF-Keystone recommends using an inside caliper and steel rule for measurement accuracy.

4.2 General Inspection

All parts of the side bearing including springs should be free of cracks. The bolster side bearing pads should be relatively flat and nominally 4 - 1/2" wide, with a minimum of 4 - 1/4". The bearing base should be securely bolted to the bearing pad. Check that all springs appear to be properly seated and aligned.
5.0 Shop Inspection

5.1 Set Up Height

The distance between the side bearing pad and the wear plate on the car body, or the set up height, must be adjusted to \(5 - \frac{1}{16}\)" ± \(\frac{1}{16}\)". (Some cars may vary. Refer to owners’ instructions.) This procedure must be performed with an empty car body located on level track. ASF-Keystone recommends using an inside caliper and steel rule for measurement accuracy.

5.2 Wear Plate Guidelines

The surface of the car body wear plate must be free of weld spatter, heavy rust, and other irregularities. If irregularities do exist, a grinding wheel may be used to remove them. Fasteners must be adequately tightened with their heads recessed below the surface of the plate. Surface height variations can be detected by holding a steel straight edge perpendicular to the plate. Any plate with variations between fastener holes greater than \(\frac{1}{8}\)", or greater than \(\frac{1}{16}\)" over any 4" space between holes, must be replaced. Also, the plate surface must be reasonably parallel to the side bearing pad. Overall, variations should not exceed \(\frac{1}{16}\)" across width or \(\frac{1}{8}\)" end to end.
5.3 Parts Inspection and Gauging

All parts of the side bearing including springs should be free of cracks. For Spring Control™ bearings only, check the vertical interlock feature on the interior of the cap for severe wear and replace cap if needed. In addition, refer to figures 6 and 7 for the wear indicator condemning limits for both Spring Control™ and Ride Control® bearings.

If 2 or more indicators are obscured, cap is not acceptable for use

Figure 6: Spring Control™ Cap Wear Indicators

If surface A meets, or becomes parallel to surface B, cap is not acceptable for use

Figure 7: Ride Control® Cap Wear Indicators
Apply the gauges in figures 8 and 9 as shown. The gauges **must not** go.

Part No. 1: Spring Control™ Bearings

Part No. 2: Ride Control® Bearings

Insert number from “part no.” column to complete “1-9271-” above

Figure 8: Side Bearing Base Width Gauge

Figure 9: Side Bearing Wall Thickness Gauge
5.4 Spring Condemning Limits

When the free heights of side bearing springs no longer meet the minimums in the following chart, they are not acceptable for use in service.

<table>
<thead>
<tr>
<th>Spring</th>
<th>Ride Control® Springs</th>
<th>Spring Control™ Springs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer</td>
<td>6.0"</td>
<td>5.5"</td>
</tr>
<tr>
<td>Inner</td>
<td>6.1"</td>
<td>5.4"</td>
</tr>
<tr>
<td>Inner Inner</td>
<td>6.1"</td>
<td>5.5"</td>
</tr>
</tbody>
</table>

An alternative spring evaluation method is based on force for an entire bearing, not free height of individual springs. When bearings at specified compressed heights fall below the minimum force levels in the chart below, they are no longer acceptable for use.

<table>
<thead>
<tr>
<th>Ride Control®</th>
<th>Spring Control™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing</td>
<td>Force at 4.5"</td>
</tr>
<tr>
<td>98-5-10152</td>
<td>4000 lbs.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>